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Abstract. This article presents a comprehensive many-body theory for optically excited semiconductors.
The coupled equations of motion for the correlation functions of the Coulomb-interacting electron-hole
system are derived and solved for different excitation conditions. The generation of a coherent excitonic
polarization and its conversion into incoherent populations is analyzed. The spontaneous emission proper-
ties of the excited system are evaluated using a fully quantized theory. Luminescence from excitonic and
electron-hole plasma populations is computed, and significant hole burning in the exciton center of mass
distributions is predicted. It is shown how different excitations states of the many-body system can be
identified by their characteristic signatures in the absorption spectra of a terahertz probe field.

PACS. 71.35.-y Excitons and related phenomena – 42.50.-p Quantum optics – 78.47.+p Time-resolved
optical spectroscopies and other ultrafast optical measurements in condensed matter

1 Introduction

Optically excited electrons and holes in a semiconductor
establish a Coulomb interacting many-body Fermion sys-
tem which exhibits characteristic dynamical features that
occur on a wide range of different time scales [1,2]. Res-
onant excitation of the semiconductor induces an inter-
band polarization which is subject to various interaction
processes leading to dephasing and/or conversion into in-
coherent populations. Besides dynamical rearrangements
and reconfigurations in their respective quantum states,
these populations can also decay radiatively by sponta-
neously emitting photons.

In order to microscopically model these effects, we have
to deal not only with the Coulomb interacting many-body
system of electron-hole excitations but also with their cou-
pling to the classical and/or quantized light field. For this
purpose, we use density-matrix theory to derive equations
of motion for the coupled carrier-photon-phonon system.
We consistently truncate the resulting hierarchies of the
relevant expectation values and compute photonic correla-
tion functions which are directly accessible in experiments.

The theory is applied to investigate the conditions un-
der which a truly incoherent excitonic population forms
and how it could be identified experimentally. Excitonic
features in linear absorption spectra are clearly not related
to any population effect since only the induced optical po-
larization and no population exists in the linear regime.
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The presence of some form of an electron-hole-pair popu-
lation is required to observe photoluminescence (PL) un-
der incoherent conditions. However, our calculations show
that the mere appearance of excitonic resonances in PL
spectra is not sufficient to draw conclusions about the
presence of excitons since also unbound electron-hole pairs
can give rise to these features [3].

As an unambiguous method to identify excitonic popu-
lations, we investigate terahertz (THz) spectroscopy which
can be used to probe transitions between excitonic eigen-
states [4–7] and other effects [8–11] in many-body sys-
tems. Under incoherent conditions, the observation of res-
onances due to these transitions is a clear signature of an
exciton population. The resonances in the THz absorp-
tion correspond to differences between energy eigenvalues
related to the relative electron-hole motion. They are in-
dependent of the exciton’s center-of-mass energy as long
as momentum dependent energy renormalizations are neg-
ligible. Therefore, the induced THz absorption is basically
insensitive to the exciton-distribution function.

This article presents an overview and a summary of
our many-body cluster-expansion approach. We start in
Section 2 with a presentations of the basic Hamiltonian
for the interacting electron-hole-photon-phonon system.
Then we summarize the equation of motion approach and
the consistent cluster-expansion scheme. Concentrating on
the semiclassical regime, we derive in Section 3 the general
semiconductor Bloch equations. We present examples of
their solutions for special cases, as well as the nonlinear
optical response related to the effect of excitation induced



144 The European Physical Journal D

dephasing due to the many-body Coulomb interaction. In
Section 4 we then analyze the conversion of a coherent
polarization into incoherent populations. The spontaneous
emission from semiconductors is discussed in Section 5,
and in Section 6 we study the linear THz-response of a
Coulomb interacting electron-hole system. In all cases, we
pay attention to excitonic features and their microscopic
origin.

2 Consistent many-body theory

In this section, we outline the microscopic treatment of
a semiconductor many-body system which is coupled to
the quantized light field and lattice vibrations. Since dif-
ferent aspects this general problem have been discussed
thoroughly in the literature [1,12,13], we just briefly sum-
marize the fundamental properties relevant for this paper.

The optically active electrons in their Bloch bands are
described with the help of the fermionic operators a†k,λ
and ak,λ where, e.g., ak,λ annihilates an electron with mo-
mentum k and λ is the combined band and spin index. In
many experimentally relevant situations, the carrier dy-
namics takes place between one conduction band (λ = c)
and one valence band (λ = v) such that we restrict the
analysis to such two-band systems.

For a quantum mechanical description of the trans-
verse electro-magnetic field, we start from the vector po-
tential A within the canonical quantization scheme [12].
The vector potential can be expanded in terms of the
steady-state mode functions Uqσ(r) where q is the wave
vector and σ is the polarization index. By using a complete
basis of mode functions, the operator A can be expressed
in terms of creation and annihilation operators of photons
corresponding to each eigenmode,

A(r, z) =
∑

q,qz

Eq/ωq [Uq(r)Bq + h.c.] (1)

where Eq =
√

�ωq/(2ε0) is the so-called vacuum field am-
plitude, ωq = c|q| is the optical frequency, and Bq is the
bosonic photon destruction operator. The quantized lat-
tice vibrations can be treated similarly introducing the
bosonic operators Dp and D†

p for phonons with momen-
tum p.

The total system Hamiltonian,

Htot = H0 +HC +HD +HP , (2)

consists of the non-interacting contribution H0, the
Coulomb interaction among the carriers HC , the light-
carrier interaction HD, and the carrier-phonon interaction
HP . To elaborate the details in Htot, we start from

H0 =
∑

k

[
εcka

†
c,kac,k + εvka

†
v,kav,k

]
+
∑

q

�ωq

(
B†

qBq +
1
2

)

+
∑

p

�Ωp

(
D†

pDp +
1
2

)
, (3)

which contains the non-interacting carriers, photons, and
phonons, respectively. The corresponding carrier energies
are

εck =
�

2k2

2me
+ Eg, (4)

εvk = −�
2k2

2mh
, (5)

with the band-gap energyEg and the reduced electron and
hole masses me,h. The phonon dispersion is given by Ωp.

The Coulombic many-body Hamiltonian of the carri-
ers is

HC =
1
2

∑

k,k′,q �=0

Vq[a†c,k+qa
†
c,k′−qac,k′ac,k

+ a†v,k+qa
†
v,k′−q,av,k′av,k

+ 2a†c,k+qa
†
v,k′−qav,k′ac,k] (6)

with the bare Coulomb matrix element Vk [14]. The in-
teraction between the optical photons and carriers follows
from

HD=−
∑

q,k

iFq

(
a†v,kac,k−q + a†c,kav,k−q

)
Bq + h.c., (7)

with Fq ≡ dv,cUqEq where dv,c is the dipole-matrix ele-
ment. Finally, the phonon-carrier interaction is given by

HP =
∑

p,k

[Gcp(Dp +D†
−p)a†c,kac,k−p

+Gvp(Dp +D†
−p)a†v,kav,k−p]. (8)

The strength of the phonon-carrier interaction is deter-
mined by the form factor Gλp [15].

2.1 Equations of motion and hierarchy problem

In general, the system properties can always be traced
back to quantum mechanical operators O and their ex-
pectation values 〈O〉 = Tr [Oρ] where ρ is the statisti-
cal operator of the system. In the following, we apply the
Heisenberg equation of motion i� ∂

∂tO = [O,Htot] to derive
the quantum dynamics for the interacting carrier-photon-
phonon system of the semiconductor. To classify the phys-
ically relevant operators, we note, that

ON = a†1...a
†
NaN ...a1, (9)

always corresponds to an N -particle operator. Here, we
use the notation that the index j = (λj ,kj) contains the
band and momentum index of the corresponding operator.
From a purely formal point of view, a single photon and
phonon operator correspond to a single-particle operator.
Thus, a general N -particle operator has the form

ON =

B†
1...B

†
N1
D†

1...D
†
N2
a†1...a

†
N3
aN3 ...a1DN4 ...D1BN5 ...B1,

(10)
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with all possible combinations of Nj fulfilling N1 +N2 +
N3 +N4 +N5 = N . According to this classification, HC ,
HP , and HD, correspond to two-particle interactions.

When the Heisenberg equations of motion are derived,
we notice that single-particle operators couple to two-
particle operators due to the Coulomb, light-matter, and
phonon-matter interactions. This coupling leads to an in-
finite hierarchy of operator equations, where all orders and
mixtures of operators are present. Since the equations of
motion for expectation values are directly obtained from
those of the operators, they inherit the same hierarchy
problem,

i
∂

∂t
〈N〉 = T [〈N〉] + V [〈N + 1〉], (11)

where the N -particle expectation value 〈N〉 couples to
higher order 〈N + 1〉 quantities via the functional V . The
functional T results mainly from the noninteracting part
of the Hamiltonian while V originates from the interac-
tions. Since equation (11) cannot be closed, we will used a
systematic truncation scheme to obtain controlled approx-
imations for the Coulomb correlations, the semiclassical,
and the quantum optical effects in solids.

2.2 Consistent truncation of correlation hierarchy

One successful approach to deal with the hierarchy prob-
lem is to use the so-called cluster-expansion [5,16–18].
This method is based on a scheme where one determines
all consistent factorizations of an N -particle quantity 〈N〉
in terms of (i) independent single particles (singlets); (ii)
correlated pairs (doublets); (iii) correlated three-particle
clusters (triplets); up to (iv) correlated N -particle clus-
ters. A systematic treatment of the hierarchy problem
is obtained if one truncates the right-hand side of equa-
tion (11) such that one includes all clusters up to a given
level.

In practice, the cluster-expansion scheme can be deter-
mined recursively if we assume that we formally know all
expectation values from 〈1〉 to 〈N〉. A specific correlated
cluster then follows recursively via

〈2〉 = 〈2〉S +∆〈2〉 (12)
〈3〉 = 〈3〉S + 〈1〉∆〈2〉 +∆〈3〉 (13)
〈N〉 = 〈N〉S + 〈N − 2〉S∆〈2〉

+ 〈N − 4〉S∆〈2〉∆〈2〉 + ...+∆〈N〉. (14)

Here, the quantities ∆〈N〉 contain the purely correlated
part of the N -particle cluster. In equations (12–14), each
term denotes a sum over all possibilities to reorganize the
N coordinates among singlets, doublets, and so on by in-
cluding the possible sign changes due to the permutations
of the carrier operators. This way all cluster groups in
equation (14) are fully antisymmetric for fermionic carri-
ers and symmetric for bosonic photon and phonon opera-
tors.

After the identification of the individual clusters, one
can easily introduce a consistent truncation, such as

〈N〉S = 〈N〉HF, (15)
〈N〉D = 〈N − 2〉S∆〈2〉 + 〈N − 4〉S∆〈2〉∆〈2〉 + ..., (16)

for singlets or doublets, respectively. In practice, 〈N〉S is
given by the Hartree-Fock approximation with all possible
combinations containing only single-particle expectation
values. The doublet part follows from all expectation val-
ues with one or more correlated pairs ∆〈2〉 combined with
the corresponding contribution of singlets 〈1〉.

If we only include plasma and exciton effects in our
analysis, an arbitrary N -particle expectation value can be
expressed consistently at the level of the singlet-doublet
approximation,

〈N〉SD = 〈N〉S + 〈N〉D. (17)

This determines uniquely how the truncation of the hi-
erarchy has to be performed; we only need to solve the
dynamics of 〈1〉 and ∆〈2〉 because any arbitrary 〈N〉SD

consist only of the two-point expectation values and four-
point correlations. According to equation (11), we obtain

i�
∂

∂t
〈1〉 = T1 [〈1〉] + V1 [〈2〉S] + V1 [∆ 〈2〉] , (18)

i�
∂

∂t
∆ 〈2〉 = T2 [∆ 〈2〉] + V2 [〈3〉SD] , (19)

where T1(2) and V1(2) are known functionals defined by
the specific form of the Heisenberg equation of motion.
The consistent singlet-doublet approximation is obtained
when 〈3〉 is approximated by 〈3〉SD. As a result, the infi-
nite hierarchy is systematically truncated and the set of
equations (18) and (19) is closed.

3 Semiconductor bloch equations

The classical part of the light field results directly from
the coherent amplitudes 〈Bq〉 and 〈B†

q〉 such that only the
electric field,

〈E(r, t)〉 =
∑

q

[
iEqUq(r)〈Bq〉 − iEqU�

q(r)〈B†
q〉
]
, (20)

is needed. To illustrate the basic features of light-matter
interaction at the semi-classical level, we first concentrate
on the excitations generated by such classical fields.

The Heisenberg equation of motion for 〈E〉 yields the
well-known wave equation

[
∇2 − n2(z)

c2
∂2

∂t2

]
〈E(z, t)〉 = µ0

∂2

∂t2
P (z), (21)

where we have assume light field propagation in the z-
direction perpendicular to a planar structure with back-
ground refractive index n(z). The semiconductor system
is assumed to be either a quantum well (QW) or a planar
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arrangement of quantum wires such that the polarization,
P (z), has only a spatial z dependency.

To determine P (z), we have to investigate the spe-
cific excitation of the planar semiconductor structure. If
we assume strongly confined quantum wells or wires, the
z-dependence of P (z) results only from the confinement
function g(z). Hence, the only real task is to compute
the amplitude of the macroscopic polarization. Using a
Bloch expansion, we can write the macroscopic polariza-
tion as P = (1/Ld)∑k dvcPk +c.c with the dipole-matrix
element dvc and normalization volume Ld. Here, Pk is
the microscopic polarization Pk ≡ 〈a†k,vak,c〉 of our two-
band system with one conduction (subscript c) and one
valence (subscript v) band; Pk is also coupled to the oc-
cupation probabilities of electrons fek ≡ 〈a†k,cak,c〉, and
holes fhk ≡ 〈ak,va†k,v〉.

From the Heisenberg equations of motion for the indi-
vidual operators, we obtain

i�
∂

∂t
Pk = ε̃kPk − [1 − fek − fhk

]
Ωk − iΓk, (22)

�

2
∂

∂t
fek = Im



PkΩ
�
k+

∑

q,k′,λ

Vqc
q,k′,k
c,λ,λ,c+

∑

q

Dc,c
k,q



, (23)

�

2
∂

∂t
fhk = Im



PkΩ
�
k−

∑

q,k′,λ

Vqc
q,k′,k
v,λ,λ,v−

∑

q

Dv,v
k,q



, (24)

with the renormalized kinetic electron-hole-pair energy

ε̃k ≡ εck − εvk −
∑

k′
Vk−k′

(
fek′ + fhk′

)
, (25)

and the renormalized Rabi frequency

Ωk ≡ dcvE(0, t) +
∑

k′
Vk−k′Pk′ . (26)

The last term of equation (22) contains the correlated two-
particle contributions

iΓk =
∑

q



Vq

∑

n,λ

cq,n,kv,λ,λ,c −Dv,c
k,q



− [c↔ v]�. (27)

Here, the true two-particle correlations are defined as

cq,k
′,k

λ,ν,ν′,λ′ ≡ ∆〈a†λ,ka†ν,k′aν′,k′+qaλ′,k−q〉
= 〈a†λ,ka†ν,k′aν′,k′+qaλ′,k−q〉
− 〈a†λ,ka†ν,k′aν′,k′+qaλ′,k−q〉S, (28)

where the factorized single-particle contributions are re-
moved. Generally, Γk leads to the dephasing of the po-
larization. The corresponding phonon terms are defined
by Dλ,ν

k,q ≡ ∑pz
Gpz ,q∆〈(Dpz,q +D†

pz ,q

)
a†λ,kaν,k−q〉. The

set of equations (22–24) defines the general semiconductor
Bloch equations (SBE).

3.1 Coherent excitons

The homogeneous solution of equation (22) without the
two-particle correlations defines the eigenvalue problem

ε̃kφ
R
λ (k) − (1 − fek − fhk

)∑

k′
Vk−k′φRλ (k′) = Eλφ

R
λ (k),

(29)
which has excitonic solutions for vanishing densities. For
elevated densities, fek and fhk are nonzero such that
the problem becomes non-Hermitian. Consequently, equa-
tion (29) has both left-handed, φLλ (k), and right-handed,
φRλ (k), solutions connected via

φLλ (k) =
φRλ (k)

1 − fek − fhk
, (30)

and normalized as
∑

k

φLλ (k)φRν (k) = δλ,ν . (31)

Expanding the polarization in the basis of these eigenfunc-
tions, we obtain

Pk =
∑

λ

pλφ
R
λ (k), pλ =

∑

k

φLλ (k)Pk. (32)

This way, equation (22) can be transformed into

i�
∂

∂t
pλ = Eλpλ − dvcφ

R
λ (r = 0)〈E(t)〉 − iΓλ, (33)

which clearly shows that optical excitations involve only
s-like states since

φRλ (r = 0) =
∑

k

φRλ (k) (34)

vanishes for states with any other symmetry. Even though
equation (33) has a seemingly simple form, the consis-
tent solution with the two-particle correlation terms Γλ is
highly nontrivial. In practice, because of the mathematical
structure of the exciton eigenfunctions, it is advantageous
to numerically evaluate the full problem in the original
electron-hole picture.

When the two-particle correlation terms in equa-
tions (22–24), e.g. Γ term in equation (22), can be ne-
glected, the system is in the so-called coherent limit [1],
where the excitation does not suffer from irreversible de-
cay and we have the strict conservation law

(
fk − 1

2

)2

+ |Pk|2 =
1
4
, (35)

where fk ≡ fek = fhk . Since the coherent limit implies that
the system does not have correlations, i.e. the Hartree-
Fock factorization is exact, one should be able to find the
many-body wavefunction in the form of a Slater deter-
minant. Thus, we seek for an exact wavefunction in the
form of

|Ψcoh(t)〉 =
∏

k

L†
k(t)|Ψ0〉, (36)



M. Kira and S.W. Koch: Microscopic theory of optical excitations, PL, and THz response in semiconductors 147

where |Ψ0〉 is the state of the unexcited semiconductor and
L†

k is a fermion creation operator such that |Ψcoh(t)〉 is a
Slater determinant. Since |Ψcoh(t)〉 does not lead to any
correlations, the only constraint is that it should produce
the correct coherent limit fk and Pk fulfilling the condi-
tion (35). We choose the operator as

L†
k(t) = eiψk(t)sinβk(t) a†c,k + cosβk(t) a†v,k, (37)

which has indeed fermionic character since [Lk, Lk′ ]+ =
[L†

k, L
†
k′ ]+ = 0 and [Lk, L

†
k′ ]+ = δk,k′ . Furthermore, one

directly finds that

fk = 〈a†c,kac,k〉 = 1 − 〈a†v,kav,k〉 = sin2βk(t), (38)

Pk = 〈a†v,kac,k〉 = sinβk(t) cosβk(t) eiψk(t). (39)

By using the basic properties of the trigonometric func-
tions, it is easy to see that equations (38) and (39) fulfill
the coherent-limit condition (35). The explicit values of
βk(t) and ψk(t) are fixed by the inverse of equations (38)
and (39), i.e.,

βk(t) = arcsin
√
fk, (40)

eiψk(t) =
Pk

|Pk| . (41)

Since the coherent limit can also be presented in the ex-
citon basis, i.e. equation (32), it is worthwhile to study
how excitonic features enter the exact wavefunction equa-
tion (36). For this purpose, it is convenient to introduce
an exciton operator

Xλ,q ≡
∑

k

φRλ (k)a†v,k−qh
ac,k+qe, (42)

containing the center-of-mass momentum and qe(h) =
(me(h)/(me +mh))q [18]. Its inverse transformation back
to the electron-hole picture follows from

a†v,k−qh
ac,k+qe =

∑

λ

φLλ (k)Xλ,q, (43)

where we used the completeness relation,∑
λ φ

L
λ (k)φRλ (k) = δk,k′. Next, we introduce the op-

erator

S =
∑

λ

[
c�λXλ,0 − cλX

†
λ,0

]
. (44)

This operator has the interesting property that

eSa†v,ke
−S = a†v,k +

[
S, a†v,k

]

−
+

1
2!

[
S,
[
S, a†v,k

]

−

]

−
+ ...

= eiψk(t)sinβk(t)a†c,k + cosβk(t) a†v,k
= L†

k(t), (45)

produces the fermionic L†
k(t) operator when we make the

identification

eiψk(t)βk(t) ≡
∑

λ

cλ(t)φRλ (k). (46)

Consequently, we can write L†
k(t) = eSa†v,ke

−S . Using this
general connection, the coherent-limit wavefunction can
then be expressed as

|Ψcoh(t)〉 =
∏

k

(
eSa†v,ke

−S
)
|Ψ0〉 = eS

(
∏

k

a†v,k

)
e−S|Ψ0〉

= eS
∏

k

a†v,k|Ψ0〉, (47)

since eSe−S = 1 and e−S |Ψ0〉 = |Ψ0〉. Form this form, we
also observe that

∏
k a

†
v,k|Ψ0〉 ≡ |ΨG〉 is the ground state

of a semiconductor where the valence band is completely
filled. Thus, the coherent state can equivalently be pre-
sented by

|Ψcoh(t)〉 = eS |ΨG〉, (48)

which indicates that the operator eS generates the coher-
ent limit.

To study the coherent limit in more detail, we deter-
mine a functional

D[c] ≡ eS[c] = e
∑

λ(c�
λXλ,0−cλX

†
λ,0), (49)

which generates the coherent-limit wavefunction,
|Ψcoh(t)〉 = D[c]|ΨG〉, according to equation (48). The
functional form of D resembles the displacement opera-
tor [19] generating coherent states for fully bosonic fields.
Due to this formal analogy, one can define that |Ψcoh(t)〉
defines coherent excitons. However, one should note that
the operator Xλ,0 is fundamentally non-bosonic [20]
such that |Ψcoh(t)〉 cannot be interpreted as a bosonic
exciton. Moreover, |Ψcoh(t)〉 is still a Slater determinant
of single-electron functions in a conduction-valence-band
superposition state. Hence, a coherent exciton is not
a truly bound electron-hole pair which must be — by
definition — a correlated two-particle electron-hole-pair
object.

A proper interpretation of coherent excitons is ob-
tained via equations (36) and (37) showing the full
fermionic substructure. One sees that a coherent exciton is
nothing but a state where any single carrier with momen-
tum k is in a superposition state between the conduction
and valence band. At the same time, the different carriers
are completely uncorrelated; only the conduction-valence
band mixture of each carrier is given by a collective phase
and amplitude determined by β and ψ.

3.2 Elliot formula

Before we discuss the microscopic correlation contribu-
tions to the SBE, we first summarize the analytic solution
of the linear problem using a phenomenological expression
for Γ [1]. This allows us to identify the principal effects be-
yond the coherent limit. To simplify the analysis, we start
from an incoherent semiconductor system, i.e., all polar-
izations vanish before the system is excited, and study
the linear response by linearizing the SBE. In this linear
limit, fek and fhk remain zero while only a small — linear —
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polarization Pk is generated. When the microscopic Γ is
replaced by a phenomenological value γpλ, equation (33)
reduces to

�ωpλ(ω) = (Eλ − iγ) pλ(ω) − dvcφ
R
λ (r = 0)〈E(ω)〉, (50)

where we Fourier-transformed to the frequency space. The
solution of this equations yields the Elliot formula [21] for
the linear semiconductor susceptibility

χ(ω) =
∑

λ dcvφ
R
λ (r = 0)pλ(ω)
〈E(ω)〉

= |dcv|2
∑

λ

|φRλ (r = 0)|2
Eλ − �ω − iγ

, (51)

which shows that absorption resonances occur at the
frequencies ω = Eλ/�.

3.3 Excitation-induced dephasing

The analysis shows that the Elliot formula remains struc-
turally unchanged when the microscopic correlation con-
tributions Γ in equation (33) are microscopically evalu-
ated. However, in this case (i) γ becomes dependent on
both ω and exciton state λ; (ii) higher energy exciton
states experience a larger γ; (iii) γ increases for elevated
carrier densities, which leads to the so-called excitation-
induced dephasing, and (iv) one finds density-, exciton-
index, and frequency-dependent renormalizations of both
Eλ and φλ(r = 0) [22,23].

To illustrate theses effects, we evaluate χ(ω) numeri-
cally including the fully microscopic Coulomb scattering
while a bath approximation [15] is applied for phonons.
We use two geometrically different GaAs-type semicon-
ductor systems: (i) a 8 nm quantum well; and (ii) a pla-
nar arrangement of identical quantum wires. The quan-
tum wires are placed such that they are much closer than
the relevant optical wave length but, at the same time,
they are so far apart that the different wires are not elec-
tronically coupled. In this situation, each quantum wire is
electronically independent and optical effects do not lead
to a diffraction pattern. Consequently, the quantum-wire
arrangement is as close as possible to the quantum well. As
a major computational advantage, the quantum-wire ar-
rangement leads to a significantly reduced numerical effort
since it has much smaller dimensional correlations and in-
tegrals compared to the quantum-well systems. We choose
the standard GaAs-type parameters for the quantum well
and wire [18] such that the three-dimensional Bohr radius
is a0 = 12.5 nm and the corresponding binding energy is
EB = 4.2 meV. The sizes of the wire and well are taken
such that they produce the same energy separation be-
tween the two lowest exciton states. The lattice temper-
ature is assumed to be low such that it is sufficient to
include only acoustic phonons [15].

Figure 1 shows the computed absorption spectra for
a quantum well (upper frame) and quantum wire (lower
frame) for four representative carrier densities. The carri-
ers are assumed to be in 40 K Fermi-Dirac distributions;

Fig. 1. Linear absorption spectra for (a) a quantum-well and
(b) a quantum-wire system at different carrier densities fol-
lowing 40 K Fermi-Dirac distributions. The insets show the
corresponding (fe + fh).

(fek + fhk ) is shown as an inset. In both cases, the low-
est density (109 cm−2 for the well and 104 cm−1 for the
wire) show a rather similar (fek+fhk ) which is always much
below unity. Consequently, both cases have clear absorp-
tion resonances at the 1s- and at the 2s-energy. At the
same time, we notice that the 2s resonance is broader al-
ready at these moderate densities, which verifies that the
excitation-induced dephasing rapidly becomes stronger for
higher lying excitons states. For elevated densities, also
the 1s resonance is broadened. Even though the corre-
sponding (fek +fhk ) is still relatively low, the 2s and higher
excitons are bleached. As a general feature for both well
and wire, we see that the spectral 1s position remains al-
most unchanged indicating that the microscopic scatter-
ing leads to energy renormalizations which compensate
the Hartree-Fock shifts. As the density is increased to
9×1010 cm−2 for the well and 3×105 cm−1 for the wire, we
see that the 1s resonance is nearly completely bleached. In
both cases, the corresponding (fek + fhk ) is close to unity,
indicating strong phase-space filling effects which eventu-
ally prevent the possibility to have bound exciton states.
Only ionized exciton states are allowed beyond this Mott
transition [24].

4 Conversion of polarization into excitons

When the correlation terms become important, the co-
herent polarization can decay into incoherent correlations
which may contain true excitons. The exciton correlation
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is determined by cq,k
′,k

X ≡ cq,k
′,k

c,v,c,v and its singlet-doublet
dynamics is determined from [5,18,25]

i�
∂

∂t
cq,k

′,k
X = εq,k

′,kcq,k
′,k

X + Sq,k′,k

+
(
1 − fek − fhk−q

)∑

l

Vl−kc
q,k′,l
X

− (1 − fek′+q − fhk′
)∑

l

Vl−k′cq,l,kX

+ iGq,k′,k +Dq,k′,k
rest + T q,k′,k, (52)

with

iGq,k′,k = (P �k − P �k−q)



Vq

∑

n,λ

c−q,n,k′
v,λ,λ,c −Dv,c

k′,−q





+ (Pk′ − Pk′+q)



Vq

∑

n,λ

cq,n,kc,λ,λ,v −Dc,v
k,q



 .

(53)

The different contributions describe the renormal-
ized kinetic energy εq,k

′,k and single-particle source
S which has the typical Coulomb scattering form
V [f1f2 (1 − f3) (1 − f4) − (1 − f1) (1 − f2) f3f4]. The
Coulomb sums with the phase-space filling factor
(1 − fe − fh) describe the attractive interaction between
electrons and holes, allowing them to become truly
bound electron-hole pairs, i.e. incoherent excitons. The
G term contains the same cv,λ,λ,c and Dv,c correlations
as Γ in equation (27), showing how coherent excitons
are converted into cq,k

′,k
X correlations which can include

true incoherent excitons. The remaining two-particle
contributions are denoted as Drest while T symbolizes the
three-particle Coulomb and phonon terms treated here at
the scattering level. Also the other correlations, cq,k

′,k
λ,ν,ν′,λ′

have a structurally similar dynamics as equation (53).
In the numerical solutions, we treat all of them together
with the corresponding equations for the singlets. This
way, we fully include one- and two-particle correlations
and obtain a closed set of equations providing a consistent
description of optical excitations in semiconductors. Once
again, the phonons are treated as a bath set to the lattice
temperature, the corresponding scattering terms are
given in references [15,18].

4.1 Incoherent excitons

Like the polarization, also the correlation cq,k
′,k

X can be
expressed in the exciton basis using

∆〈X†
λ,qXν,q〉 =

∑

k,k′
φLλ (k)φLν (k′)cq,k

′−qh,k+qe

X (54)

cq,k
′−qh,k+qe

X =
∑

λ,ν

φRλ (k)φRν (k′)∆〈X†
λ,qXν,q〉. (55)

By applying equation (55) in equation (52), we obtain

i�
∂

∂t
∆〈X†

λ,qXν,q〉 = (Eν − Eλ)∆〈X†
λ,qXν,q〉

+ (Eν − Eλ) 〈X†
λ,qXν,q〉S

+ iGλ,ν(q) +Dλ,ν
rest(q) + T λ,ν(q), (56)

where the singlet scattering, Sq,k′,k, in equation (52) leads
to a source

〈X†
λ,qXν,q〉S =

∑

k

φLλ (k)fek+qe
fhk−qh

φLν (k). (57)

The other sources are expressed symbolically as Gλ,ν(q),
Dλ,ν

rest(q), and T λ,ν(q).
If we assume completely incoherent conditions,

Gλ,ν(q) vanishes. In addition, if we introduce an ap-
proximation where Dλ,ν

rest(q) is neglected while the triple
scattering is described phenomenologically via T λ,ν(q) =
−iγ∆〈X†

λ,qXν,q〉, we find a simple steady-state solution

∆〈X†
λ,qXν,q〉 = − Eν − Eλ

Eν − Eλ − iγ
〈X†

λ,qXν,q〉S, (58)

provided that the carrier densities remain constant. We
notice that we have no true exciton populations, i.e. the di-
agonal contributions ∆〈X†

λ,qXλ,q〉 vanish. Consequently,
true exciton populations can be generated only if (i) triplet
scattering is described microscopically [18] or (ii) a co-
herent polarization is converted into populations via the
Gλ,ν(q) term [25].

Next, we investigate the polarization-to-population
conversion via the full numerical solutions of the
singlet-doublet equations. Since, Gλ,ν(q), Dλ,ν

rest(q), and
T λ,ν(q) contain genuine fermion correlations, like
density-polarization and density-density correlations, the
consistent analysis must be performed in the original
electron-hole picture. However, from the results of these
computations, we can directly construct true exciton prop-
erties via the transformation (55). Especially, we can de-
termine the momentum distribution and density [5,18] of
a specific ν exciton by using

∆Nν(q) ≡ ∆〈X†
ν,qXν,q〉 (59)

∆nν =
1
Ld
∑

q

∆Nν(q), (60)

respectively.
Due to the numerical complexity of the coupled equa-

tions, we perform the full computation only for the
quantum-wire system. To study the generation of incoher-
ent excitons in their different quantum states, we assume
pulsed optical excitation resonant with either the 1s- or
2s-resonance; the lattice temperature is 4 K. We repeat
the computations for two different pump intensities and
evaluate the evolution of the exciton density ∆nν relative
to the generated carrier density n = (1/Ld)∑k f

e(h)
k .
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Fig. 2. System dynamics after excitation at the 1s-exciton res-
onance for (a) a low and (b) an intermediate pump intensity.
Plotted are the excitation pulse (light shaded area), the gener-
ated |P |2 (dark shaded line), the carrier density (dashed line),
and the 1s-exciton density (solid line). The circles denote the
time moments for which further results are shown in Figures 6,
7, and 9.

4.2 Resonant 1s excitation

When the semiconductor is excited resonantly, one first
obtains coherent excitons, i.e. polarization which then may
be converted into true excitons. In order to determine the
corresponding dynamics, we investigate resonant 1s exci-
tation assuming two different intensities for the pulsed op-
tical excitation. In Figure 2, we show the excitation pulse
(bright shaded area), the computed polarization (dark
shaded area), the carrier density (dashed line), and the
1s-exciton density (solid line). We compare the results for
a low excitation intensity (Fig. 2a) and an intermediate in-
tensity (Fig. 2b). For the low excitation, the polarization
decays on a 2.8 ps scale and we reach a carrier density of
104 cm−1, whereas for the intermediate density we find a
more rapid decay time of 1.9 ps and a density approaching
105 cm−1. The decay times are in good agreement with
the corresponding line width of the linear absorption of
Figure 1. Thus, we conclude that the higher excitation
decays faster due to the elevated excitation-induced de-
phasing. As the polarization decays, it clearly becomes
converted into true 1s-exciton populations. For the lower
excitation, the conversion efficiency is above 90%. This
large conversion fraction is expected since coherent and
incoherent 1s-excitons have an excellent energetic match.
However, the elevated intensity excitation produces only
around 25% conversion event though the excitation is still
relatively weak. As the excitation is increased further, the
conversion drops to zero thanks to the fermionic substruc-
ture of the excitons [24,25].

Fig. 3. System dynamics following an excitation at the
2s-exciton resonance. Plotted are |P |2 (shaded area), the car-
rier density (dashed line), the 2s-exciton density (dotted line),
and the 2p-exciton density (solid line).

4.3 Resonant 2s excitation

The results of calculations done for excitation at the
2s-exciton resonance are presented in Figure 3. Here, we
have used a 2 ps long excitation pulse the computed po-
larization (shaded area) practically follows its temporal
evolution; also the corresponding carrier density (dashed
line) as well as the exciton densities n2s (dotted line) and
n2p (solid line) are shown. In the one-dimensional quan-
tum wire, 2p-exciton corresponds to the lowest exciton
with an odd symmetry φ2p(−k) = −φ2p(k); it is practi-
cally degenerate with the symmetric 2s-exciton in analog
to the two-dimensional system. Figure 3 shows that the
generated polarization decays rather fast on a sub 1 ps
scale even though the carrier density is below 104 cm−1.
This is again a consequence of the fact that the excitation-
induced dephasing is much stronger for the 2s than for the
1s resonance as discussed in Section 3.3. As the polariza-
tion decays, the 2s-polarization is converted into a mix of
2s and 2p populations, which is not unexpected from the
point of view of the conservation of energy. However, the
significant generation of p-type excitons might be unex-
pected at first sight since it involves a symmetry change
of the optically generated s-type polarization.

In the case of 2s pumping, the polarization-to-
population conversion is dominantly mediated via the
Coulomb scattering [25]. In order to understand how the
Coulomb interaction induces symmetry changes in the po-
larization conversion, we now investigate the scattering
(Γ ) and the conversion (G) mechanisms which stem from
the same fermionic correlation cv,λ,λ,c = ∆〈a†va†λaλac〉 be-
tween polarization and fermionic density. Consequently,
the specific form of the polarization decay fully determines
the corresponding conversion in excitonic population.

As a first test, we make the simplest possible phe-
nomenological approximation



Vq

∑

n,λ

cq,n,kv,λ,λ,c





app.

= i
γ

2
Pkδq,0. (61)
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Fig. 4. Schematic presentation of two polarization-to-
population conversion schemes: (a) via the dephasing model
described by equations (62) and (63) and (b) via the diffusive
model described by equations (67) and (68).

By inserting this into equations (27) and (53), we find a
decay model

iΓ app
k =

∑

q



Vq

∑

n,λ

cq,n,kv,λ,λ,c





app

− [c↔ v]� = iγPk, (62)

iGq,k′,k
app. = 2iP �kΓPk′ δq,0. (63)

These approximations conserve the property that [P �kPk′+∑
q c

q,k′,k
X ] is a constant of motion with respect to the

scattering such that polarization-to-population conver-
sion is properly described. However, this model only al-
lows for conversion of s-type polarization to s-like exci-
ton populations, in contrast to our microscopic results.
The corresponding polarization-to-population conversion
is schematically illustrated in Figure 4a.

For a better approximation, we look at the pro-
cess of excitation-induced dephasing [14]. We notice that
Coulomb induced dephasing is actually a diffusive redis-
tribution of the microscopic polarizations since it satisfies
strict conservation laws

∑

k

Γk = 0 (64)

∑

k,k′,q

Gq,k′,k = 0. (65)

Clearly, our first approximation violates these conditions.
In order to analyze the consequences of these fundamental
restrictions, we use a somewhat reduced model which still
has the same structural form as the second-Born solution
of cv,λ,λ,c [14]. We approximate



Vq

∑

n,λ

cq,n,kv,λ,λ,c





red.

= iUq(Pk − Pk−q)/2, (66)

where Uq is chosen to be a real-valued, nonlinear func-
tional of f and P . By inserting this into equations (27)

and (53), we find a diffusive model

iΓ red
k =

∑

q



Vq

∑

n,λ

cq,n,kv,λ,λ,c





red

− [c↔ v]�

= i
∑

q

Uq(Pk−q − Pq), (67)

iGq,k′,k
red = (P �k − P �k−q)



Vq

∑

n,λ

c−q,n,k′
v,λ,λ,c





red.

− (Pk′+q − Pk′)



Vq

∑

n,λ

cq,n,kv,λ,λ,c




�

red.

= i(P �k − P �k−q)Uq(Pk′+q − Pk′), (68)

which both obey the conservation laws (64–65). The
corresponding polarization-to-population conversion is
schematically illustrated in Figure 4b. We observe that
Γ red

k removes polarization from the state Pk and redis-
tributes it to Pk−q. A slightly more complicated redistri-
bution is observed for populations.

Due to the relatively simple form of Gred, we may now
express it in the exciton basis. Especially, the the conver-
sion rate to the exciton state ν becomes

Gν,νred(q) =
∑

k,k′
φLν (k)φLν (k′)Gq,k′−qh,k+qe

red

= |Mν(q)|2fq, (69)

Mν(q) ≡
∑

k

φLν (k) [Pk+qe − Pk−qh
] , (70)

indicating that Coulomb scattering leads to the generation
of excitons with finite momenta, but no population in the
q = 0 state is produced. For low to moderate 2s excitation,
we may use the approximation Pk ∝ φR2s(k). With the
help of the symmetries φR2s(−k) = φR2s(k) and φR2p(−k) =
−φR2p(k), we find that 2s- and 2p-generation rates follow
from

M2s(q) ∝
∑

k

φL2p(k)
[
φR2s(k + qe) − φR2s(k + qh)

]
, (71)

M2p(q) ∝
∑

k

φL2p(k)
[
φR2s(k + qe) + φR2s(k + qh)

]
. (72)

which both vanish for q = 0 but become clearly nonzero
for q �= 0.

For 2s pumping, the energy conservation aspects of
Uq are practically the same for 2s and 2p since these
states are nearly degenerate. As a result, the overlap of
the wavefunctions with shifted arguments in Mν(q) de-
termines the conversion rate such that |Mν(q)|2 can be
used to estimate the ratio of generated 2s and 2p popu-
lations. The q dependency of |M2s(q)|2 (dashed line) and
|M2p(q)|2 (solid line) are shown in Figures 5a and 5b for
the quantum well (wire) by using the low-density exciton
wavefunction. The computed 2p distribution is shown in
Figure 5c for the wire after the polarization-to-population
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Fig. 5. Analytically computed |M2s(q)|2 (solid line) and
|M2p(q)|2 (shaded area) for (a) a quantum well and (b) a quan-
tum wire. (c) The numerically computed 2p distribution at the
final time moment of Figure 3.

conversion is complete. We observe that the approxima-
tive analysis produces qualitatively similar distribution as
the full computation. In addition, the quantum-well and
wire estimates are very close to each other. If we assume
that the q dependence of Uq can be ignored,

∑
q |M2s(q)|2

and
∑

q |M2p(q)|2 describes the relative conversion into 2s
and 2p-excitons, respectively. The approximative descrip-
tion of conversion produces a ratio of 1.36 of 2s over 2p
population for the quantum wire, which is close to the
numerical result in Figure 3a. Repeating the same calcu-
lations for the quantum well, we get a ratio 0.99 showing
that the generation of p-like states is strong and qualita-
tively similar for quantum wells and wires.

Since the Coulomb interaction conserves the angular
momentum, one may ask how this conservation law is ful-
filled when a 2s polarization is converted into 2p-excitons.
This problem is easily answered by noting that we have
a many-body system where only the total angular mo-
mentum is conserved. As a simplified example, we can
consider a many-body state consisting of two perfect 2p-
excitons. Thus, one exciton may be in a quantum state
|φn,m〉 with the usual quantum numbers n = 1, m = ±1
for 2p-excitons. Using the Clebsch-Gordan coefficients for
a two-dimensional system, we may construct a two-exciton
state with total (J = 0, Jz = 0)

|Ψ0,0〉 =
1√
2
[|φ1,m=+1〉1|φ1,m=−1〉2

+ |φ1,m=−1〉1|φ1,m=+1〉2], (73)

showing that the many-body system can generate individ-
ual p-excitons even though the total angular momentum
remains in an s-like state.

5 Semiconductor luminescence equations

The optically generated semiconductor excitation can re-
combine spontaneously due to the vacuum-field fluctua-
tions of the light field. To fully describe this aspect, we
have to quantize the light field. For this purpose, we apply
the cluster-expansion and investigate the semiconductor
luminescence. The incoherent light emission follows from
the photon-number type doublets ∆〈B†B〉. For the planar
structures studied here, we separate qz and the in-plane
momentum q and find

i�
∂

∂t
∆〈B†

qz ,qBq′z ,q〉 = � (ωq′ − ωq)∆〈B†
qz ,qBq′z ,q〉

+ i
∑

k

[Fq∆〈Bq′z ,qa†c,kav,k−q〉

+ F�
q′∆〈B†

qz ,qa
†
v,k−qac,k〉]. (74)

This equation shows that ∆〈B†B〉 is coupled to an ampli-
tude ∆〈B†a†vac〉 which describes correlations in a process
where an electron is lowered from the conduction to the
valence band under simultaneous emission of a photon.
The corresponding correlation dynamics follows from

i�
∂

∂t
∆〈B†

qz ,qa
†
v,k−qac,k〉 =

(ε̃k(q)−�ωq)∆〈B†
qz ,qa

†
v,k−qac,k〉

− [1 − fek − fhk−q

]
ΩST(k; qz ,q)

+ iFqz,q

[
fekf

h
k−q +

∑

l

∆〈a†c,l+qa
†
v,k−qac,kav,l〉

]

+Dcoh
k,q + Tk,q (75)

where we have defined the renormalized kinetic energy

ε̃k(q) ≡ ε̃ek + ε̃hk−q −
∑

l

Vk−l

[
fel + fhl−q

]
, (76)

and the stimulated contribution

ΩST(k; qzq) ≡
∑

q′z

iFq,q′z∆〈B†
qz ,qBq′z ,q〉

+
∑

l

Vk−l∆〈B†
qz ,qa

†
v,lac,l−q〉. (77)

The coupling to coherent correlations and correlated
triplets is described schematically by Dcoh

k,q and Tk,q, re-
spectively. In general, equations (74) and (75) constitute
the semiconductor luminescence equations. The first line
of equation (75) resembles the semiconductor Bloch equa-
tions; renormalized kinetic energies ε̃ and phase-space fill-
ing, 1− fe− fh, can be identified directly [1]. The second
line introduces a new source term: as long as there is a
carrier density excited in the system, the singlet contribu-
tion fefh drives photon-assisted recombinations leading
to a build-up of photon numbers even if the coherence
and correlation contributions vanish initially. As a result,
∆〈B†a†vac〉 is generated, i.e., fefh provides a spontaneous
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emission source to the recombination process. According
to the factor fekf

h
k−q, the spontaneous emission takes place

only if an electron at k and a hole at k − q are present
simultaneously. The spontaneous emission source is mod-
ified by the correlated part, ∆〈a†ca†vacav〉, which includes
the possibility to emit light directly from true exciton pop-
ulations. As the photoluminescence starts to build up, the
stimulated contribution Ωinc

ST can alter the emission spec-
trum. To obtain a closed set of equation, one also has to
solve simultaneously the dynamics of the carrier densities,
∆〈a†ca†vacav〉, ∆〈a†ca†cacac〉, ∆〈a†va†vavav〉, and the phonon
terms.

5.1 Radiative decay

The spontaneous recombination adds a new term to the
density and exciton-correlation equations. The incoherent
source terms for the carrier distributions and the excitonic
correlations are

�
∂

∂t
fek|SE = − 2Re

[
∑

q,qz

Fq,qz∆〈B†
q a

†
v,k−qac,k〉

]
, (78)

∂

∂t
fhk |SE = − 2Re

[
∑

q,qz

Fq,qz∆〈B†
qa

†
v,kac,k+q〉

]
, (79)

i�
∂

∂t
cq,k

′,k
X |SE =

− i
(
1 − fek − fhk−q−

)∑

qz

Fq,qz∆〈B†
q,qz

a†v,k′ac,k′+q〉

− i
(
1 − fek′−q − fhk′

)∑

qz

Fq,qz∆〈Bq,qza
†
c,kav,k−q〉, (80)

respectively. As a distinct difference between the carrier
and exciton recombination, we notice that all momentum
states k of fe(h)

k can recombine radiatively, whereas the
exciton populations couple to the light field only if their
center-of-mass momentum matches with the in-plane mo-
mentum, q, of the photons.

To analyze the effect of spontaneous emission on ex-
citon and carrier distributions, we plot them at different
time moments after the same 1s excitation used in Fig-
ure 6. We observe that carrier densities are quickly gen-
erated and, after that, they do not show much evolution
since the total radiative loss rate is rather slow. The 1s-
excitons are clearly generated with a wide spread of mo-
mentum since for the chosen excitation condition, the con-
version is dominated by phonon scattering [25] which does
not have a strong momentum selectivity. After and during
the conversion, we observe that the very low momentum
excitons, roughly those with |q|a0 < 0.1, show a fast de-
cay due to photoluminescence related recombination. The
excitons in these momentum states are optically active,
i.e. these are the ‘bright excitons’ that give rise to lumi-
nescence. Due to its momentum selectivity this recombi-
nation leads to a significant hole burning in the exciton
distributions [5]. Since the typical radiative decay time for
these bright excitons is on the order of of 10 ps [26–28],

Fig. 6. (a) Computed 1s-exciton and (b) carrier distributions
for a time sequence after the resonant 1s excitation described
in Figure 2. The inset shows the excitonic center-of-mass dis-
tribution in the vicinity of the optically active low-momentum
states.

the majority of all the excitons is predominantly in ‘dark
states’.

Since an electron with any momentum k can recombine
with a hole having a corresponding momentum, electron
and hole distributions do not show a momentum selectiv-
ity such that they change slowly on a nanosecond time
scale. This critical difference between exciton and carrier
distributions makes excitons highly nonthermal even if
carriers are in a thermal quasi equilibrium. This funda-
mental characteristics can be seen as nonequilibrium fea-
tures in exciton photoluminescence [23,28,29]. The related
luminescence spectra

IPL(ωq) =
∂

∂t
∆〈B†

q,qz
Bq,qz 〉, (81)

which is strictly valid for steady state emission [13], are
shown in Figure 7 for matching times and excitation of
Figure 6. We observe that the luminescence follows the
hole-burning dynamics and that the 1s resonance remains
in the spectrum even when the optically active excitons
are significantly decayed.

5.2 Analytic luminescence formula

In order to gain some further insights into the spectral fea-
tures and the population dependence of the semiconductor
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Fig. 7. Photoluminescence spectra computed for different
times after the 1s excitation presented in Figure 2. The time
moments are identical to those used for Figure 6.

luminescence, we look for an analytic solution under in-
coherent conditions. In many experimentally relevant sit-
uations, the carrier system changes slowly such that the
populations fλ and∆〈a†ca†vacav〉 can be taken as constant.
For such situations, the incoherent equations (74) and (75)
are closed. We furthermore replace the specific form of
triplet scattering by a constant dephasing. If we gener-
alize the analytical correlation (58) to allow for exciton
populations, we find

∆〈X†
λ,qXν,q〉 = ∆Nλ(q)δλ,ν

− Eν − Eλ
Eν − Eλ − iγ

〈X†
λ,qXν,q〉S, (82)

where ∆Nλ(q) determines the population of excitons in
state λ while the remaining term is the correlated part
of the electron-hole plasma. For small enough γ, equa-
tion (82) reduces to

∆〈X†
λ,qXν,q〉 = ∆Nλ(q)δλ,ν − (1 − δλ,ν) 〈X†

λ,qXν,q〉S,
(83)

which we will use in the further analysis.
Within this approximation scheme, we obtain a simple

expression for the photoluminescence spectrum which is
given as the steady-state photon flux,

IPL(ωq) =
2|Fq|2

�

× Im




∑

λ

|φRλ (r = 0)|2
[
∆Nλ(q) + 〈X†

λ,qXλ,q〉S
]

Eλ − �ωq − iγ



 .

(84)

As mentioned above, this result is valid only for low den-
sities and negligible broadening. However, the extension
for higher densities is straight forward in the same way as
for the Elliot formula (51). Consequently, we find sim-
ilar density-dependent features, such as frequency and
exciton-index dependent renormalizations of φν , Eν , and
γ [23].

Comparing equations (84) and (51) we note strong sim-
ilarities. In particular, the frequency dependence of both

Fig. 8. Comparison of computed luminescence spectra on a
linear (top figures) and a logarithmic scale (bottom figures).
The figures on the left-hand side show the results for the
quasi-equilibrium electron-hole luminescence at a temperature
of 77 K without any excitonic populations and the figures on
the right-hand side include 10% excitons in a thermal distri-
bution. The spectra have been computed for a carrier density
of 1010 cm−2.

equations is governed by the same denominator giving rise
to excitonic resonances. Hence, we can already conclude
at this point, that the appearance of these resonances is
independent of the detailed structure of the factor appear-
ing in the numerator of equation (84). In particular, the
singlet term,

〈X†
λ,qXλ,q〉S =

∑

k

φLλ (k)fek+qe
fhk−qh

φLλ (k), (85)

describes excitonic photoluminescence from correlated
electron-hole plasma populations while ∆Nλ(q) corre-
sponds to the true exciton population luminescence. Since
the electron-hole plasma and exciton population terms ap-
pear additively in ∆Nλ, both contributions can lead to lu-
minescence and therefore also to emission at the excitonic
resonances. Thus, the mere appearance of luminescence,
e.g., at the 1s-resonance cannot be taken as a unique sig-
nature of exciton populations [3].

To illustrate these features, we show in Figure 8 nor-
malized luminescence spectra that have been computed
with (right column) and without (left column) an incoher-
ent excitonic population in a quantum-well system. First
of all, we note that the spectra are dominated by a strong
1s-resonance in both cases. Whereas it is basically impos-
sible to identify exciton population effects in the normal-
ized spectra on a linear scale (top figures), we see that
the logarithmic scale (bottom figures) reveals a character-
istic difference in the ratio of the 1s and 2s or bandedge
luminescence. A quantitative analysis of this ratio in a se-
ries of experimental measurements for different excitation
conditions makes it possible to extract informations about
the excitonic population of the optically active states [23].
However, the total exciton population is not directly ac-
cessible via PL experiments.
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6 Terahertz spectroscopy

An unambiguous method to identify excitonic populations
is to perform terahertz (THz) spectroscopy, i.e. to probe
transitions between excitonic eigenstates [4,5]. Under in-
coherent conditions, the observation of resonances due to
these transitions is a clear signature of an exciton popu-
lation.

For the theoretical description of THz processes, the
light-matter interaction discussed in this article has to be
extended to include the coupling to intraband quantities.
Microscopically, this interaction follows from

HTHz = −A(t)
∑

k

[
jc(k)a†c,kac,k + jv(k)a†v,kav,k

]

+
Q2A2(t)

2m0

∑

k

[
a†c,kac,k + a†v,kav,k

]
, (86)

which includes the current-matrix element

jλ(k) ≡ Q�k · eσ
mλ

, (87)

with the effective mass mλ and polarization direction of
the field eσ which lies in the QW plane. The derivation
providing jλ with an effective mass is performed, e.g., in
reference [30].

In general, the A2 term only leads to refractive in-
dex changes and it is largely suppressed in Coulomb-
interacting systems [30], such that the THz absorption
follows entirely from the macroscopic current

J ≡
∑

k

[
je(k)fek + jh(k)fhk

]
. (88)

The relation between the many-body states and the THz
response becomes clearest when we focus on the situation
where all interband coherences vanish (i.e., P = 0) and
A is in the THz regime. Under these conditions, only the
excitonic correlations couple directly to THz field, which
makes THz absorption uniquely qualified method to di-
rectly detect many-body correlations under incoherent con-
ditions. In practice, we need to solve the following inco-
herent equations

JTHz =
1
S
∑

k,λ

jλ(k)fλk , (89)

∂

∂t
fek = −2

�
Im




∑

q,k′
Vk′+q−kc

q,k′,k
X −

∑

q,k′
Vqc

q,k′,k
c,c,c,c



, (90)

∂

∂t
fhk = +

2
�
Im




∑

q,k′
Vk′−q−kc

q,k,k′
X −

∑

q,k′
Vqc

q,k′,k
v,v,v,v



, (91)

i�
∂

∂t
cq,k

′,k
X |THz = +j(k′ + q − k)A(0, t)cq,k

′,k
X , (92)

where only the THz part is expressed for cq,k
′,k

X ; the other
parts can be found in equation (52).

Fig. 9. Terahertz spectra determined at different time mo-
ments after the resonant 1s excitation used in Figure 2. The
time sequence is identical to that of Figure 6.

Fig. 10. Computed THz spectrum at the final time after reso-
nant 2s excitation as shown in Figure 3. The negative absorp-
tion indicates optical gain in the THz regime.

To illustrate the basic capabilities of THz spectroscopy,
we evaluate the THz absorption for the same computation
as in Figure 6 following a resonant 1s excitation. We ob-
serve that a clear 1s to 2p transition resonance can be seen,
verifying the presence of 1s populations. We also observe
that the hole burning of optically active excitons has only
a small effect of the THz absorption, showing that this
spectroscopy is sensitive to both bright and dark exciton
populations.

In the case of the resonant 2s excitation, one could
reach a situation where one has a population inversion
between the 1s and 2p states. Under such conditions, the
THz response shows clear gain signatures, as can be seen
in Figure 10, where we plot the THz response for the final
time of 2s excitation analyzed in Figure 3.

In order to obtain some analytic insights, we now make
adiabatic approximations which can be applied when
those parts of fe(h) and cX that are independent of the
THz field have a slow temporal variation. Under these
conditions, the exciton correlation dynamics (56) can be
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generalized to include the THz excitation

i�
∂

∂t
∆〈X†

λ,qXν,q〉 =

(Eν − Eλ)∆〈X†
λ,qXν,q〉 − (Eν − Eλ) 〈X†

λ,qXν,q〉S
+
∑

β

[Jλ,β∆〈X†
β,qXν,q〉−Jν,β∆〈X†

λ,qXβ,q〉]A(t)+T λ,ν(q),

(93)

where we have defined the THz transition matrix element

Jν,λ =
∑

k

φ�ν(k)j(k)φλ(k). (94)

This expression implies the typical dipole selection rules,
i.e. J is vanishing for ν = λ, whereas e.g. ν = 1s and
λ = 2p gives non-zero contributions.

If we assume that cq,k
′,k

c,c leads to a simple decay of THz
currents and replace the triplet term by a phenomenolog-
ical dephasing, we can write the analytic solution for the
linear THz susceptibility

χTHz(ω) =

− 1
ε0�ω2(ω + iΓ )

∑

ν,λ

(
Sν,λω ∆nν,λ −

[
Sν,λ−ω∆nν,λ

]�)
.

(95)

This solution involves the response function

Sν,λω =
∑

β

(Eν − Eβ)Jν,βJβ,λ
Eβ − Eν − �ω − iγ

. (96)

In the case that only exciton populations exist, i.e.
∆nν,λ = δν,λ∆nν,ν ≡ δν,λ∆nν , equation (95) reduces to

χatom(ω) = − 1
ε0

∑

ν

(
Sνatom(ω)

− [Sνatom(−ω)]�
)
∆nν , (97)

Sνatom(ω) =
∑

β

|Dν,β |2
Eβ − Eν − �ω − iγ

, (98)

where Dν,λ = 〈φν |er · eP |φλ〉 defines the excitonic dipole-
matrix element. Equation (98) has a form that is typical
for an atomic absorption spectrum when different atomic
levels are populated according to ∆nν . Consequently, the
correlation ∆nν has a one-to-one correspondence to the
atom number in state ν. This identification supports the
concept of exciton populations and the separation of popu-
lation and correlated plasma contributions to the lumines-
cence, as used in the analytic luminescence formula (84).

7 Summary

The examples in this paper demonstrate the current sta-
tus of the systematic many-body approach to describe the

semiclassical and quantum-optical properties of semicon-
ductor structures. The cluster-expansion of the relevant
correlation functions is a viable procedure to construct
closed sets of equations at well defined levels of approxima-
tion. For special situations, these equations can be solved
analytically, allowing us to gain important insights into
the basics of light-matter interaction. Besides the Elliot
formula for the semiclassical absorption coefficient, which
has been known since many decades, we derive a similar
equation for the light emission. As for the absorption, also
the emission resonances are determined by the character-
istic eigenergies of the Coulomb interacting system, i.e., by
the exciton resonances. Hence, for conditions where these
resonances are present, i.e. at not too high temperatures
and densities, they will dominate the emission spectra. As
a consequence, the luminescence is centered around the 1s-
exciton resonance, even if the electron-hole system exists
in the form of plasma populations without true excitons.

Under suitable conditions, the theory predicts the
presence of incoherent excitonic populations in the sys-
tem. Most properties of these excitons are strongly influ-
enced by the fermionic structure of the constituent quasi-
particles. Excitonic populations efficiently contribute to
the luminescence as long as the optically active, energet-
ically low momentum states are occupied. Consequently,
the radiative decay leads to hole burning in the excitonic
distribution, leaving most of the excitonic populations in
dark states. The calculations show that the presence of
excitonic populations in bright and dark states leads to
characteristic signatures in the induced absorption of a
THz probe field, which measures the transitions between
the excited quasiparticle states.

For resonant excitation, it is shown that the coher-
ent optical polarization can be efficiently converted into
1s-exciton populations for sufficiently low excitation level.
If the excitation is tuned to the 2s-resonance a mixture
of excitons in 2s- and 2p-states is generated leading to a
population inversion between the 2p- and 1s-states which
manifests itself in gain for a THz probe field.

This work was supported by the Optodynamics Center and
the Deutsche Forschungsgemeinschaft through the Quantum
Optics in Semiconductors Research Group.
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